RBSE Solutions for Class 10 Maths Chapter 7 Trigonometric Identities Ex 7.2.
Class 10 Maths Chapter 7 Trigonometric Identities Ex 7.2 Solution is provided in this post. Here we have provide the solutions of RBSE Boards Books according to chapter wise.
Chapter 7 Trigonometric Identities Ex 7.2. |
RBSE Solutions for Class 10 Maths Chapter 7 Trigonometric Identities Ex 7.1.
Question 1.
Find the value of the following :
Solution :
Find the value of the following :
Solution :
Question 2 :
Find the value of the following :
(i) cosec 25° – sec 25°
(ii) cot 34° – tan 56°
(iii)
(iv) sin θ cos(90° – θ) + cos θ sin (90° – θ)
Solution :
(i) cosec 25° – sec 65°
= cosec(90° – 65°) – sec 65° [∵ cosec(90° – θ) = sec θ]
sec 65° – sec 65°
= 0
(ii) cot 34° – tan 56°
= cot(90° – 56°) – tan 56° [∵ cot(90 – θ) = tan θ]
= tan 56° – tan 56°
= 0
(iii)
= 1 – 1
= 0
(iv) sin θ cos(90° – θ) + cos θ sin (90° – θ)
= sin θ sin θ + cos θ cos θ [∵ cos (90° – θ) = sin θ sin (90° – θ) = cos θ]
= sin2 θ + cos2 θ [∵ sin2 θ + cos2 θ = 1]
= 1
Find the value of the following :
(i) cosec 25° – sec 25°
(ii) cot 34° – tan 56°
(iii)
(iv) sin θ cos(90° – θ) + cos θ sin (90° – θ)
Solution :
(i) cosec 25° – sec 65°
= cosec(90° – 65°) – sec 65° [∵ cosec(90° – θ) = sec θ]
sec 65° – sec 65°
= 0
(ii) cot 34° – tan 56°
= cot(90° – 56°) – tan 56° [∵ cot(90 – θ) = tan θ]
= tan 56° – tan 56°
= 0
(iii)
= 1 – 1
= 0
(iv) sin θ cos(90° – θ) + cos θ sin (90° – θ)
= sin θ sin θ + cos θ cos θ [∵ cos (90° – θ) = sin θ sin (90° – θ) = cos θ]
= sin2 θ + cos2 θ [∵ sin2 θ + cos2 θ = 1]
= 1
Question 3.
(i) sin 70° sin 20° – cos 20° cos 70°
(ii) – cos 60°
Solution :
(i) sin 70° sin 20° – cos 20° cos 70°
= sin(90° – 20°)sin 20° – cos 20° cos(90° – 20°)
= cos 20° sin 20° – cos 20° sin 20°
= 0
(ii) – cos 60°
= 2 – 3/2
=
(i) sin 70° sin 20° – cos 20° cos 70°
(ii) – cos 60°
Solution :
(i) sin 70° sin 20° – cos 20° cos 70°
= sin(90° – 20°)sin 20° – cos 20° cos(90° – 20°)
= cos 20° sin 20° – cos 20° sin 20°
= 0
(ii) – cos 60°
= 2 – 3/2
=
Question 4.
Solution :
Solution :
Question 5.
(i) tan 12° cot 38° cot 52° cot 60° tan 78°
(ii) tan 5° tan 25° tan 30° tan 45° tan 65° tan 85°
Solution :
(i) tan 12° cot 38° cot 52° cot 60° tan 78°
= tan 12° cot 38° cot(90° – 38°) cot 60° tan(90° – 12°)
= tan 12° cot 38° tan 38° cot 60° cot 12° [∵ cot(90° – θ) = tan θ]
= cot 60° =
(ii) tan 5° tan 25° tan 30° tan 45° tan 65° tan 85°
= tan 5° tan 25° tan 30° × 1 × tan(90° – 25°) tan(90° – 5°)
= tan 5° tan 25° tan 30° × cot 25° cot 5° [∵ tan(90° – θ) = cot θ]
(i) tan 12° cot 38° cot 52° cot 60° tan 78°
(ii) tan 5° tan 25° tan 30° tan 45° tan 65° tan 85°
Solution :
(i) tan 12° cot 38° cot 52° cot 60° tan 78°
= tan 12° cot 38° cot(90° – 38°) cot 60° tan(90° – 12°)
= tan 12° cot 38° tan 38° cot 60° cot 12° [∵ cot(90° – θ) = tan θ]
= cot 60° =
(ii) tan 5° tan 25° tan 30° tan 45° tan 65° tan 85°
= tan 5° tan 25° tan 30° × 1 × tan(90° – 25°) tan(90° – 5°)
= tan 5° tan 25° tan 30° × cot 25° cot 5° [∵ tan(90° – θ) = cot θ]
Question 6.
Express the following terms of trigonometric ratios of angles 0° to 45°.
(i) sin 81° + sin 71°
(ii) tan 68° + sec 68°
Solution :
(i) sin 81° + sin 71°
= sin(90° – 9°) + sin(90° – 19°)
= cos 9° + cos 19°
(ii) tan 68° + sec 68°
= tan(90° – 22°) + sec(90° – 22°)
= cot 22° + cosec 22°
Express the following terms of trigonometric ratios of angles 0° to 45°.
(i) sin 81° + sin 71°
(ii) tan 68° + sec 68°
Solution :
(i) sin 81° + sin 71°
= sin(90° – 9°) + sin(90° – 19°)
= cos 9° + cos 19°
(ii) tan 68° + sec 68°
= tan(90° – 22°) + sec(90° – 22°)
= cot 22° + cosec 22°
Question 7.
Verify the following –
sin 65° + cos 25° = 2 cos 25°
Solution :
L.H.S. = sin 65° + cos 25°
= sin(90° – 25°) + cos 25°
cos 25° + cos 25° [∵ sin(90 – θ) = cos θ]
= 2 cos 25°
= R.H.S.
Verify the following –
sin 65° + cos 25° = 2 cos 25°
Solution :
L.H.S. = sin 65° + cos 25°
= sin(90° – 25°) + cos 25°
cos 25° + cos 25° [∵ sin(90 – θ) = cos θ]
= 2 cos 25°
= R.H.S.
Question 8.
sin 35° sin 55° – cos 35° cos 55° = 0
Solution :
L.H.S. = sin 35° sin 55° – cos 35° cos 55°
= sin 35° sin(90° – 35°) – cos 35 cos(90° – 35°)
= sin 35° cos 35° – cos 35° sin 35°
∵ sin(90° – θ) = cos θ
cos(90° – θ) = sin θ
= 0
= R.H.S.
sin 35° sin 55° – cos 35° cos 55° = 0
Solution :
L.H.S. = sin 35° sin 55° – cos 35° cos 55°
= sin 35° sin(90° – 35°) – cos 35 cos(90° – 35°)
= sin 35° cos 35° – cos 35° sin 35°
∵ sin(90° – θ) = cos θ
cos(90° – θ) = sin θ
= 0
= R.H.S.
Question 9.
– 8sin230° = 0
Solution :
L.H.S. = – 8sin230°
2 – 2 = 0
= R.H.S.
– 8sin230° = 0
Solution :
L.H.S. = – 8sin230°
2 – 2 = 0
= R.H.S.
Question 10.
sin (90° – θ) cos(90° – θ) =
Solution :
L.H.S. = sin (90° – θ) cos(90° – θ)
= cos θ sin θ
= R.H.S.
sin (90° – θ) cos(90° – θ) =
Solution :
L.H.S. = sin (90° – θ) cos(90° – θ)
= cos θ sin θ
= R.H.S.
Question 11.
Solution :
L.H.S.
= cos2 θ + sin2 θ
= 1 [∵ cos2 θ + sin2 θ = 1]
= R.H.S.
Solution :
L.H.S.
= cos2 θ + sin2 θ
= 1 [∵ cos2 θ + sin2 θ = 1]
= R.H.S.
Question 12.
Solution :
L.H.S.
= cos2 θ – cos2 θ
= 0
= R.H.S.
Solution :
L.H.S.
= cos2 θ – cos2 θ
= 0
= R.H.S.
Question 14.
Solution :
L.H.S.
= sin3 θ cos θ + cos3 θ sin θ
= sin θ cos θ (sin2 θ + cos2 θ) [∵ sin2 θ + cos2 θ = 1]
= sin θ cos θ
= R.H.S.
Solution :
L.H.S.
= sin3 θ cos θ + cos3 θ sin θ
= sin θ cos θ (sin2 θ + cos2 θ) [∵ sin2 θ + cos2 θ = 1]
= sin θ cos θ
= R.H.S.
Question 15.
If sin 3θ = cos(θ – 6°) here 3θ and (θ – 6°) are acute angles, then find the value of θ.
Solution :
Given :
sin 3θ = cos(θ – 6°)
or cos(90° – 3θ) = cos(θ – 6°) [∵ cos(90° – θ) = sin θ]
or 90° – 3θ = θ – 6°
or 3θ + θ = 90° + 6°
or 4θ = 96°
or θ = = 24°
If sin 3θ = cos(θ – 6°) here 3θ and (θ – 6°) are acute angles, then find the value of θ.
Solution :
Given :
sin 3θ = cos(θ – 6°)
or cos(90° – 3θ) = cos(θ – 6°) [∵ cos(90° – θ) = sin θ]
or 90° – 3θ = θ – 6°
or 3θ + θ = 90° + 6°
or 4θ = 96°
or θ = = 24°
Question 16.
If sec 5θ = cosec(θ – 36°) here 5θ is an acute angle, then find the value of θ.
Solution :
Given :
sec 5θ = cosec(θ – 36°)
or cosec(90° – 5θ) = cosec(θ – 36°) [∵ cosec(90° – θ) = sec θ]
or 900 – 5θ = θ – 36°
or 5θ + θ = 90° + 36°
or 6θ = 126°
or θ = = 21°
Thus θ = 21°
If sec 5θ = cosec(θ – 36°) here 5θ is an acute angle, then find the value of θ.
Solution :
Given :
sec 5θ = cosec(θ – 36°)
or cosec(90° – 5θ) = cosec(θ – 36°) [∵ cosec(90° – θ) = sec θ]
or 900 – 5θ = θ – 36°
or 5θ + θ = 90° + 36°
or 6θ = 126°
or θ = = 21°
Thus θ = 21°
Question 17.
If A, B and C are interior angles of a triangle ABC then Prove that
Solution :
we know that, in any triangle
∠A + ∠B + ∠C = 180°
If A, B and C are interior angles of a triangle ABC then Prove that
Solution :
we know that, in any triangle
∠A + ∠B + ∠C = 180°
Question 18.
If cos 2θ = sin 4θ and 2θ and 4θ are acute angles then find θ.
Solution :
Given :
cos 2θ = sin 4θ
or cos 2θ = cos(90° – 4θ) [∵ cos(90° – θ) = sin θ]
or 2θ = 90° – 4θ
or 6θ = 90°
or θ =
θ = 15°.
If cos 2θ = sin 4θ and 2θ and 4θ are acute angles then find θ.
Solution :
Given :
cos 2θ = sin 4θ
or cos 2θ = cos(90° – 4θ) [∵ cos(90° – θ) = sin θ]
or 2θ = 90° – 4θ
or 6θ = 90°
or θ =
θ = 15°.
Hope that the Solutions provided here for Class 10 Maths Chapter 7 Trigonometric Identities Ex 7.2 will help you. If you have any query regarding Rajasthan Board RBSE Class 10 Maths Chapter 7 Trigonometric Identities Ex 7.2. solution drop a comment below and like and share the post.
Thank you.
0 Comments