Chapter 17 Measures of Central Tendency Ex 17.2

Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Ex 17.2

Find the mean (arithmetic) of following frequency distribution (Q. 1 – 4)
Question 1.
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q1.1
Solution :
Table of A.M.
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q1.2
Thus, A.M. (\overline { x }) = \frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } } =\frac { 99 }{ 14 }  = 7.07
Thus, required A.M. = 7.07
Question 2.
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q2.1
Solution :
Table for A.M.
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q2.2
Thus, arithmetic mean (\overline { x }) = \frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } } =\frac { 151 }{ 20 }  = 7.55
Thus, required A.M. = 7.55
Question 3.
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q3.1
Solution:
Table for A.M.
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q3.2
Thus, arithmetic mean (\overline { x }) = \frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } } =\frac { 72 }{ 210 }  = 0.34
Thus, required A.M. = 0.34
Question 4.
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q4.1
Solution:
Table for A.M.
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q4.2
Thus, arithmetic mean (\overline { x }) = \frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } } =\frac { 27.5 }{ 50 }  = 0.55
Thus, required A.M. = 0.55
Question 5.
The number of children in 100 families ia as follows :
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q5.1
Find their arithmetic mean.
Solution:
calculation for arithmetic mean
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q5.2
Thus, arithmetic mean (\overline { x }) = \frac { { \Sigma f }{ x } }{ { \Sigma f } } =\frac { 200 }{ 100 }  = 2
Thus, arithmetic mean = 2
Question 6.
Weight of students in a class are given in following table :
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q6.1
Find their arithmetic mean :
Solution :
Table for A.M.
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q6.2
Thus, arithmetic mean (\overline { x }) = \frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } } =\frac { 717 }{ 30 }  = 23.9
Thus, required A.M. = 23.9
Question 7.
If mean of following distribution is 7.5 then find value of p
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q7.1
Solution :
Arithmetic mean = 7.5
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q7.2
Thus, arithmetic mean (\overline { x }) = \frac { { \Sigma f }{ x } }{ { \Sigma f } }
7.5 = \frac { 303+9P }{ 41+P }
⇒ (41 + p) (7.5) = 303 + 9P
⇒ (41 × 7.5) + 7.5p = 303 + 9P
⇒ 307.5 – 303 = 9P – 7.5P
⇒ 1.5P = 4.5
⇒ P = \frac { 4.5 }{ 1.5 }  = 3
Thus, value of P = 3
Question 8.
If mean following frequency distribution is 1.46, then find unknown frequencies.
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q8.1
Solution:
Let unknown frequencies are f1 and f2 :
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q8.2
Given : Σfi = 200
But from table Σfi = 86 + f1 + f2
So, 86 + f1 + f2 = 200
⇒ f1 + f2 = 200 – 86 = 114
⇒ f1 + f2 = 114 ……(i)
According to question, arithmetic mean = 1.46
or \overline { x } = \frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } }
⇒ 1.46 = \frac { { 140+f }_{ 1 }{ +2f }_{ 2 } }{ 200 }
⇒ 140 + f1 + 2f2 = 292
f1 + f2 = 292 – 140
f1 + 2f2 = 152 ….(ii)
subtracting equation (ii)from(i),
Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Q8.3
Putting value of f2 in equation (i),
f1 + 38 = 114
⇒ f1 = 114 – 38 = 76
Thus, unknown frequencies are 76 and 38

Post a Comment

0 Comments